Logo Helmholtz Zentrum München

Project description

The Schneider group wants to unravel the mechanisms how epigenetic mechanisms control genome function by applying different biochemical and biophysical approaches as well as various developmental and cell biology systems.
 
Our group has a strong experience in deciphering the function of novel types and sites of histone modifications and their role in disease processes (see for examples: Tropberger et al., Cell 2013; di Cerbo et al., eLife 2014; Kebede et al., NSMB 2017). For the future we want to identify novel pathways (beyond the classical histone tail modifications) regulating genome function and in particular their deregulation in diseases such as cancer or diabetes. This will allow us to discover new therapy targets and unique diagnostic or prognostic markers.

For a novel project on the interphase between chromatin biochemistry, epitranscriptomics and epigenetics we are looking for a PhD student with previous lab experience in e.g. chromatin/transcription research. The PhD student will undertake a challenging project, the study of a new covalent modification, in an internationally renowned environment. The aims are to I) map the modification for the first time, II) to identify the modifying pathways (writers and erasers), III) to unravel the function of the modification and its link with the cellular environment as well as iv) the consequences of its deregulation (e.g. in metabolic diseases). 

This project will address a central question in epigenetics: what are the mechanism via which the cellular environment (e.g. the metabolic state of the cell) controls genome function and the transcriptome? You will be part of a very enthusiastic and international team, learn state of the art technologies (such as imaging techniques, different types of “omics” assays and their analysis, chromatin reconstitutions …) and will have the possibility to advance the fascinating fields of epigenetics and epitranscriptomics.

Related literature:

Tropberger P., et al. (2013), Regulation of transcription through acetylation of H3K122 on lateral surface of the histone octamer. Cell V. 152, 4, 859-872.    check

Di Cerbo V., et al. (2014), Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and fascilitates transcription. eLife 3:e01632.

Kebede AF. et al. (2011), Histone propionylation is a mark of active chromatin. Nature Structural & molecular biology 24, 1048-1056.

We use cookies to improve your experience on our Website. We need cookies to continuously improve the services, to enable certain features and when embedding services or content of third parties, such as video player. By using our website, you agree to the use of cookies. We use different types of cookies. You can personalize your cookie settings here:

Only cookies permitted that are required for the basic functionality of our websites.
Permit cookies that help us to analyse the page views and user behavior on our websites. We only use this information for improving our services.
Permit embedded content and cookies from third party providers. This setting enables the full use of our web services (e.g. displaying videos).
Please find more information in our privacy statement.

There you may also change your settings later.